Abstract

Dendritic cell (DC)-based vaccine has been established in tumor immunotherapy. Importantly, the efficiency of anti-tumor T-cells in draining lymph nodes is dependent on the status of DCs surrounding in tumors. It has been shown that Indoleamine 2,3-dioxygenase (IDO) plays a key role to induce tolerogenic DCs in tumor microenvironment, and tyrosine kinase inhibitors (TKIs) can suppress the function of IDO in DCs. However, the stimulatory effect of TKI-modified DCs on T cells remains unclear. In this report, we found that one type of TKI-dasatinib can modify DCs to increasing the activation of allogenic T cells. These TKI-modified DCs delayed the onset of B16 melanoma progression in mice. In mechanistic studies, TKIs did not increase the maturation but reduce the expression and phosphorylation levels of IDO and IDO mediated tryptophan metabolism in DCs. In addition, the suppressive effect of TKIs on tryptophan metabolism may be caused by blocking c-Kit pathway in DCs. Furthermore, the increased phosphorylation of general control nonderepressible (GCN2) and decreased expression of aryl hydrocarbon receptor (AhR)/aryl hydrocarbon receptor nuclear translocator (ARNT) were observed in the T cells activated by TKI-modified DCs, suggesting the enhancement of effector function of T cells. These results indicate that TKI could be used to modulate DC immunogenic activity and may potentially be applied in DC-based cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.