Abstract

Hereditary tyrosinaemia type I (HT 1) (McKusick 276700) is caused by a deficiency of fumarylacetoacetate hydrolase (FAH) activity, the last enzyme in the tyrosine catabolic pathway. Homozygous disruption of the gene encoding FAH in mice (Fah) causes neonatal lethality (i.e. lethal Albino deletion c14CoS mice), which limits the use of this animal as a model for HT I. We developed a new mouse model that carries two genetic defects, Fah and 4-hydroxyphenylpyruvate dioxygenase (Hpd). The double mutant Fah -/- Hpd -/- mice grew normally without evidence of liver and renal disease, showing a phenotype similar to Hpd -/- mice. Complete blockage of the tyrosine catabolic pathway at the, step of HPD prevents development of clinical phenotypes. Administration of homogentisate resulted in rapid apoptosis of hepatocytes and renal tubular epithelial cells, a central feature of visceral injury in patients with HT I. Simultaneously, renal tubular function was impaired, resulting in Fanconi syndrome. Apoptosis of hepatocyte and renal tubular cells is prevented by the caspase inhibitors YVAD or DEVD. However, these inhibitors do not prevent the release of cytochrome c or the development of renal tubular dysfunction. Apoptosis of hepatocytes and of renal tubular epithelial cells are characteristic features of this disease and the apoptotic signal in this disease seems to be initiated by fumarylacetoacetate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.