Abstract

Objective: PD-1/PD-L1 immune checkpoint treatment is effective for some triple-negative breast cancer populations with PD-L1 expression, but the response rate is still not satisfactory. This study aims to explore the mechanism of drug resistance to breast cancer anti-PD-1 therapies and the strategies for overcoming the resistance to PD-1therapies. Methods: By constructing a human triple-negative breast cancer drug-resistant cell line called BT-549R5 and a mouse breast cancer drug-resistant cell line called 4T1R3, and applying the whole-gene shRNA library screening, candidate drug resistance-associated molecules were obtained and verified by cytological experiments. The expression of Tyro3, Axl and MerTK of the TAM family in the 4T1R3 group was tested using the Western blot method. The down-regulation of CDK9 on the effect of T cells killing the BT-549R5 cells was observed through T cell killing tests, while the down-regulation of Tyro3 and CDK9 on the effect of anti-PD-1 therapies for transplanted breast tumors was observed in mouse tumor formation experiments. Results: The cell lines and animal models of breast cancer resistant to PD-1 treatment were successfully constructed. Tyro3, Axl and MerTK were highly expressed in 4T1R3 cells. Whole genome sequencing showed that Tyro3 and CDK9 were highly expressed in BT-549R5 cells. T cell killing experiment showed that the survival rate of BT-549R5 cells in the CDK9 down-regulated group and the control group decreased gradually with the increase of T cells, but the survival rate of BT-549R5 cells in the CDK9 down-regulated group decreased rapidly. Tumor formation experiment in mice showed that under anti-PD-1 treatment, the transplanted tumor in the 4T1R3 cell group grew rapidly compared with the 4T1 cell group (P<0.05), and the tumor volume of the 4T1R3 group was larger than that of the 4T1 group on Day 20. Nevertheless, the tumor growth rates in the CDK9-knockdown 4T1R3 cell group and the Tyro3-knockdown 4T1R3 cell group were similar to that of the 4T1 cell group, and the tumor volumes at day 20 were signiference lower than that of 4T1R3 cell group(P<0.05). Conclusions: Tyro3 and CDK9 are associated with the drug resistance to anti-PD-1 therapies for breast cancer. Inhibiting the expression of Tyro3 and CDK9 can reverse the drug resistance to breast cancer treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call