Abstract

Light Affine Logic (LAL) is a system due to Girard and Asperti capturing the complexity class P in a proof-theoretical approach based on Linear Logic. LAL provides a typing for lambda-calculus which guarantees that a well-typed program is executable in polynomial time on any input. We prove that the LAL type inference problem for lambda-calculus is decidable (for propositional LAL). To establish this result we reformulate the type-assignment system into an equivalent one which makes use of subtyping and is more flexible. We then use a reduction to a satisfiability problem for a system of inequations on words over a binary alphabet, for which we provide a decision procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.