Abstract
We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial time: dual light affine logic (DLAL). DLAL has a simple type language with a linear and an intuitionistic type arrow, and one modality. It corresponds to a fragment of light affine logic (LAL). We show that contrarily to LAL, DLAL ensures good properties on lambda-terms (and not only on proof-nets): subject reduction is satisfied and a well-typed term admits a polynomial bound on the length of any of its beta reduction sequences. We also give a translation of LAL into DLAL and deduce from it that all polynomial time functions can be represented in DLAL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.