Abstract
We use droplet epitaxy to create tensile-strained GaP quantum dots in a GaAs matrix. A strong biaxial tensile strain leads to the formation of a type-II band lineup with a transition energy lower than the bulk GaAs band gap. The luminescence transients exhibit highly non-exponential decay behavior with an average time constant of 11 ± 2 μs, which is more than three orders of magnitude longer than the lifetime of standard type-I quantum dots. The prolonged luminescence decay time for the GaP/GaAs dots confirms the formation of the type-II band alignment associated with the tensile strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.