Abstract
The ratio of isothiocyanates (ITCs) to nitriles formed in the myrosinase-catalyzed hydrolysis of glucosinolates is a key factor determining the physiological effect of glucosinolate containing plants and materials. In this context, the mechanism by which nitrile formation occurs is not well understood. In the present paper we have studied the effect of three redox reagents – Fe 2+, glutathione (GSH) and ascorbic acid – on the profile of products obtained upon the hydrolysis of a model glucosinolate (glucosibarin ((2 R)-2-hydroxy-2-phenylethylglucosinolate)) catalyzed by Brassica carinata myrosinase. A Micellar Electrokinetic Capillary Chromatography method that allows following on-line the hydrolysis of the glucosinolate, the formation of the degradation products and the oxidation of GSH was used. Increasing the concentration of Fe 2+ and GSH (from 0.25- to 2-fold molar excess with respect to the glucosinolate) increased the ratio of nitrile ((2 R)-2-hydroxy-2-phenylethylcyanide) to oxazolidine-2-thione ((5 S)-5-phenyloxazolidine-2-thione), whereas increasing the concentration of ascorbic acid decreased this ratio. Low concentrations of ascorbic acid favored nitrile formation. A mechanism for nitrile formation involving a disulfide bond in the myrosinase complex is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.