Abstract

Trichothecenes are the most common Fusarium toxins detected in grains and related products. Type A trichothecenes are among the mycotoxins of greatest concern to food and feed safety due to their high toxicity. Recently, two different trichothecene genotypes within Fusarium species were reported. The available information showed that Tri1 and Tri16 genes are the key determinants of the trichothecene profiles of T-2 and DAS genotypes. In this review, polymorphisms in the Tri1 and Tri16 genes in the two genotypes were investigated. Meanwhile, the functions of genes involved in DAS and NEO biosynthesis are discussed. The possible biosynthetic pathways of DAS and NEO are proposed in this review, which will facilitate the understanding of the synthesis process of trichothecenes in Fusarium strains and may also inspire researchers to design and conduct further research. Together, the review provides insight into trichothecene profile differentiation and Tri gene evolutionary processes responsible for the structural diversification of trichothecene produced by Fusarium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.