Abstract

Fusarium species, particularly Fusarium graminearum and F. culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000–2013 and (2) to enhance the standardization of epidemiological data collection. Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F. graminearum, 479 F. culmorum, and 3 F. cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European dataset showed that in F. graminearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON) (82.9%), followed by 3-acetyldeoxynivalenol (3-ADON) (13.6%), and nivalenol (NIV) (3.5%). In F. culmorum, the prevalent genotype was 3-ADON (59.9%), while the NIV genotype accounted for the remaining 40.1%. Both, geographical and temporal patterns of trichothecene genotypes distribution were identified.

Highlights

  • Fusarium head blight (FHB) is one of the most important cereal diseases worldwide

  • The availability of a full open access database provides for the first time a centralized source of information for Fusarium disease records on cereals, which is of high value for researchers working in the mycotoxin/Fusarium biodiversity domain

  • Whether this depends on cropping and/or climatic factors merits further investigation given the fact that the 15-ADON chemotype is currently the major cause of DON accumulation in European wheat

Read more

Summary

Introduction

Fusarium head blight (FHB) is one of the most important cereal diseases worldwide. Severe outbreaks of FHB may result in significant yield losses of up to 50%, depending on the small grain cereal crop (Parry et al, 1995). McMullen et al (2012) suggested that FHB in the United States might lead to economic losses in excess of one billion USD per year. FHB is usually caused by a set of different Fusarium species, with different life styles and different types of mycotoxins produced. Within the Fusarium graminearum species complex (FGSC; O’Donnell et al, 2000), which presently includes 16 species (Aoki et al, 2012), F. culmorum and F. cerealis are among the most dominant pathogens causing head blight on wheat and other cereals worldwide (Moss and Thrane, 2004; Osborne and Stein, 2007). Other frequently detected species are F. poae, F. avenaceum, F. langsethiae, F. tricinctum, F. sporotrichioides (Ioos et al, 2004; Xu et al, 2005; Xu and Nicholson, 2009; Somma et al, 2014), and the non-toxigenic species Microdochium nivale and M. majus (Glynn et al, 2005)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.