Abstract
Diabetes mellitus is a long-term condition characterized by hyperglycemia. It could lead to plenty of difficulties. According to rising morbidity in recent years, the world’s diabetic patients will exceed 642 million by 2040, implying that one out of every ten persons will be diabetic. There is no doubt that this startling figure requires immediate attention from industry and academia to promote innovation and growth in diabetes risk prediction to save individuals’ lives. Due to its rapid development, deep learning (DL) was used to predict numerous diseases. However, DL methods still suffer from their limited prediction performance due to the hyperparameters selection and parameters optimization. Therefore, the selection of hyper-parameters is critical in improving classification performance. This study presents Convolutional Neural Network (CNN) that has achieved remarkable results in many medical domains where the Bayesian optimization algorithm (BOA) has been employed for hyperparameters selection and parameters optimization. Two issues have been investigated and solved during the experiment to enhance the results. The first is the dataset class imbalance, which is solved using Synthetic Minority Oversampling Technique (SMOTE) technique. The second issue is the model's poor performance, which has been solved using the Bayesian optimization algorithm. The findings indicate that the Bayesian based-CNN model superbases all the state-of-the-art models in the literature with an accuracy of 89.36%, F1-score of 0.88.6, and Matthews Correlation Coefficient (MCC) of 0.88.6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.