Abstract

BackgroundObesity is one of today’s most visible public health problems worldwide. Although modern bariatric surgery is ostensibly considered safe, serious complications and mortality still occur in some patients.ObjectiveThis study aimed to explore whether serious postoperative complications of bariatric surgery recorded in a national quality registry can be predicted preoperatively using deep learning methods.MethodsPatients who were registered in the Scandinavian Obesity Surgery Registry (SOReg) between 2010 and 2015 were included in this study. The patients who underwent a bariatric procedure between 2010 and 2014 were used as training data, and those who underwent a bariatric procedure in 2015 were used as test data. Postoperative complications were graded according to the Clavien-Dindo classification, and complications requiring intervention under general anesthesia or resulting in organ failure or death were considered serious. Three supervised deep learning neural networks were applied and compared in our study: multilayer perceptron (MLP), convolutional neural network (CNN), and recurrent neural network (RNN). The synthetic minority oversampling technique (SMOTE) was used to artificially augment the patients with serious complications. The performances of the neural networks were evaluated using accuracy, sensitivity, specificity, Matthews correlation coefficient, and area under the receiver operating characteristic curve.ResultsIn total, 37,811 and 6250 patients were used as the training data and test data, with incidence rates of serious complication of 3.2% (1220/37,811) and 3.0% (188/6250), respectively. When trained using the SMOTE data, the MLP appeared to have a desirable performance, with an area under curve (AUC) of 0.84 (95% CI 0.83-0.85). However, its performance was low for the test data, with an AUC of 0.54 (95% CI 0.53-0.55). The performance of CNN was similar to that of MLP. It generated AUCs of 0.79 (95% CI 0.78-0.80) and 0.57 (95% CI 0.59-0.61) for the SMOTE data and test data, respectively. Compared with the MLP and CNN, the RNN showed worse performance, with AUCs of 0.65 (95% CI 0.64-0.66) and 0.55 (95% CI 0.53-0.57) for the SMOTE data and test data, respectively.ConclusionsMLP and CNN showed improved, but limited, ability for predicting the postoperative serious complications after bariatric surgery in the Scandinavian Obesity Surgery Registry data. However, the overfitting issue is still apparent and needs to be overcome by incorporating intra- and perioperative information.

Highlights

  • BackgroundObesity is one of today’s most important public health problems worldwide

  • When comparing 29 machine learning (ML) algorithms, we found that overfitting was still the overwhelming problem even though some algorithms showed both high accuracy >0.95 and an acceptable area under curve (AUC) >0.90 for the training data [9]

  • The incidence of serious complications after bariatric surgery in our study was 3.2%, which is similar to other studies [12,41]

Read more

Summary

Introduction

BackgroundObesity is one of today’s most important public health problems worldwide. With no changes in the current trends, the estimated prevalence of severe obesity (BMI greater than 35 kg/m2) will reach 9% for women and 6% for men within a few years [1]. A variety of machine learning (ML) methods, including artificial neural networks [16], decision trees [17], Bayesian networks [18], and support vector machines [19], have been widely applied with the aim of detecting key features of the patient conditions and modeling the disease progression after treatment from complex health information and medical datasets. The application of different ML methods in feature selection and classification in multidimensional heterogeneous data can provide promising tools for inference in medical practices [20,21] These highly nonlinear approaches have been utilized in medical research for the development of predictive models, resulting in effective and accurate decision making [22,23,24]. Modern bariatric surgery is ostensibly considered safe, serious complications and mortality still occur in some patients

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call