Abstract

Ribosome-inactivating proteins (RIPs) from plants inhibit protein synthesis by inactivating ribosomes. Some two-chain (type 2) RIPs are highly toxic and may play a role in plant defense. The lower toxicity of single-chain (type 1) RIPs reflects the lack of a protein domain able to bind to, and translocate the toxin across cell membranes. We studied the effect of single-chain RIPs, lychnin, momordin, gelonin, PAP-S and saporin S-6, in larvae of Anticarsia gemmatalis and Spodoptera frugiperda. After ingesting a total dose of 20 or 40 μg of the toxins, weight gain, survival rate, lesions in DNA and oxidative status (catalase and superoxide dismutase activities and lipidic peroxidation) of RIP-treated insects were assayed. Momordin was the less toxic in the biossays. S. frugiperda had a more pronounced weight loss on the 4th day of treatment and A. gemmatalis on the 10th day. RIP-induced mortality reached 57.13% for A. gemmatalis and 29.45% for S. frugiperda. RIP-treated insects showed a 2–3-fold increase in DNA lesions as assessed by the comet assay, but there were no correlations between stress markers and DNA damage. We conclude that single-chain RIPs are entomotoxic to lepidopteran insects causing extensive DNA lesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call