Abstract

To gain a physiological understanding of the effects of high temperatures on cucumber ( Cucumis sativus L.), we subjected seedlings to heat treatment at daytime temperatures of 28 °C, 32 °C, and 36 °C for 7 h a day for 30 days. The amount of active oxygen species, indicators of senescence, and photosynthetic properties in the second and third leaves were determined at the start of temperature treatment and on the 15th and 30th days of treatment. The amount of active oxygen species superoxide in leaves was greatest in the high temperature zones on the 15th day of treatment, and the amount of hydrogen peroxide was greatest in the high temperature zones on both the 15th and 30th days of treatment. The reduction in the amount of protein and the increase in the amount of malondialdehyde, both indicators of senescence, were greatest in the high temperature zones on both the 15th and 30th days of treatment, and the amount of chlorophyll was lowest in the 36 °C zone on the 15th day, and lower in the high temperature zones on the 30th day. It is clear from these results that a large amount of active oxygen species is generated and accumulated in the leaves at high temperatures, and senescence is significantly accelerated. The photosynthetic properties of stomatal conductance, sub-stomatal CO 2 concentration, and transpiration rate were at the same level on both the 15th and 30th days of treatment in all three temperature treatment zones. No significant difference was seen in the net photosynthesis rate between the 28 °C and 32 °C zones, was lower in the 36 °C zone than the 32 °C zone on the 15th day, and lowest in the 36 °C zone on the 30th day. CO 2 intake and water absorption are only mildly affected by high temperatures, and the reduction in net photosynthesis rate due to the 36 °C high temperature stress suggests that the large amount of active oxygen species induces inhibition of photosynthesis and damage to the mechanism of photosynthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.