Abstract

A sustained K(+) current (I(ss)) is attenuated in ventricular cells from streptozotocin (STZ)-induced diabetic rats. The in vitro addition of insulin to isolated cells augments I(ss) in a process that is blocked by disrupting either actin microfilaments (with cytochalasin D) or microtubules (with colchicine). When these agents are added at progressively later times, the effect of insulin becomes evident in a time-dependent manner. I(ss) is also augmented by insulin in control cells in a cytoskeleton-dependent manner. However, in contrast to diabetic cells, cytoskeleton-dependent augmentation of I(ss) by insulin occurs at a considerably faster rate in control cells. Immunofluorescent labeling shows a reduced density of beta-tubulin in diabetic cells, particularly in perinuclear regions. In vitro insulin replacement or in vivo insulin injections given to STZ-treated rats enhances beta-tubulin density. These results suggest an impairment of cytoskeleton function and structure under insulin-deficient conditions, which may have implications for cardiac function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.