Abstract
We investigated the role of cdc42, a Rho GTPase family member, in insulin-induced glucose transport in 3T3-L1 adipocytes. Microinjection of anti-cdc42 antibody or cdc42 siRNA led to decreased insulin-induced and constitutively active G(q) (CA-G(q); Q209L)-induced GLUT4 translocation. Adenovirus-mediated expression of constitutively active cdc42 (CA-cdc42; V12) stimulated 2-deoxyglucose uptake to 56% of the maximal insulin response, and this was blocked by treatment with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin, or LY294002. Both insulin and CA-G(q) expression caused an increase in cdc42 activity, showing that cdc42 is activated by insulin and is downstream of G alpha(q/11) in this activation pathway. Immunoprecipitation experiments showed that insulin enhanced a direct association of cdc42 and p85, and both insulin treatment and CA-cdc42 expression stimulated PI3-kinase activity in immunoprecipitates with anti-cdc42 antibody. Furthermore, the effects of insulin, CA-G(q), and CA-cdc42 on GLUT4 translocation or 2-deoxyglucose uptake were inhibited by microinjection of anti-protein kinase C lambda (PKC lambda) antibody or overexpression of a kinase-deficient PKC lambda construct. In summary, activated cdc42 can mediate 1) insulin-stimulated GLUT4 translocation and 2) glucose transport in a PI3-kinase-dependent manner. 3) Insulin treatment and constitutively active G(q) expression can enhance the cdc42 activity state as well as the association of cdc42 with activated PI3-kinase. 4) PKC lambda inhibition blocks CA-cdc42, CA-G(q), and insulin-stimulated GLUT4 translocation. Taken together, these data indicate that cdc42 can mediate insulin signaling to GLUT4 translocation and lies downstream of G alpha(q/11) and upstream of PI3-kinase and PKC lambda in this stimulatory pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.