Abstract
Linear probing continues to be one of the best practical hashing algorithms due to its good average performance, efficiency, and simplicity of implementation. However, the worst-case performance of linear probing seems to degrade with high load factors due to a primary-clustering tendency of one collision to cause more nearby collisions. It is known that the maximum cluster size produced by linear probing, and hence the length of the longest probe sequence needed to insert or search for a key in a hash table of size n, is Ω(logn), in probability. In this article, we introduce linear probing hashing schemes that employ two linear probe sequences to find empty cells for the keys. Our results show that two-way linear probing is a promising alternative to linear probing for hash tables. We show that two-way linear probing has an asymptotically almost surely O(loglogn) maximum cluster size when the load factor is constant. Matching lower bounds on the maximum cluster size produced by any two-way linear probing algorithm are obtained as well. Our analysis is based on a novel approach that uses the multiple-choice paradigm and witness trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.