Abstract
Linear probing is one of the most popular implementations of dynamic hash tables storing all keys in a single array. When we get a key, we first hash it to a location. Next we probe consecutive locations until the key or an empty location is found. At STOC'07, Pagh et al. presented data sets where the standard implementation of 2-universal hashing leads to an expected number of Ω(log n) probes. They also showed that with 5-universal hashing, the expected number of probes is constant. Unfortunately, we do not have 5-universal hashing for, say, variable length strings. When we want to do such complex hashing from a complex domain, the generic standard solution is that we first do collision free hashing (w.h.p.) into a simpler intermediate domain, and second do the complicated hash function on this intermediate domain. Our contribution is that for an expected constant number of linear probes, it is suffices that each key has O(1) expected collisions with the first hash function, as long as the second hash function is 5-universal. This means that the intermediate domain can be n times smaller, and such a smaller intermediate domain typically means that the overall hash function can be made simpler and at least twice as fast. The same doubling of hashing speed for O(1) expected probes follows for most domains bigger than 32-bit integers, e.g., 64-bit integers and fixed length strings. In addition, we study how the overhead from linear probing diminishes as the array gets larger, and what happens if strings are stored directly as intervals of the array. These cases were not considered by Pagh et al.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.