Abstract

This paper describes experiments on small solid particle settling behaviour in stationary homogeneous isotropic air turbulence. We present here a new methodology using a recently developed cruciform apparatus: a large horizontal cylindrical vessel equipped with a pair of counter-rotating fans and perforated plates at each end is used to generate stationary near-isotropic turbulence in the core region between the two perforated plates and a long vertical vessel is used to supply heavy descending particles from its top. This novel experimental design, without the unwanted influences from the injection of particles, the mean flow, and the decay of turbulence, allows direct imaging and velocity measurements of the two-way interaction between heavy particles and homogeneous isotropic turbulence. Consequently, the spatiotemporal responses of both fluid turbulence and particle settling can be determined by high-speed digital particle image velocimetry and accelerometry, together with the wavelet transform analysis for the first time. Hence, experimental information on and thereby understanding of the particle settling rate, preferential accumulation, and turbulence modification due to the presence of the particles is obtained.We found that the particle settling velocity (1.0. Furthermore, the slip velocities between fluid turbulence and heavy particles can stimulate the laden turbulent flow to become more intermittent in the dissipation range. Finally, a simple energy balance model for turbulence modification is given to explain these results and areas for further study identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call