Abstract

Abstract. Ice-sheet models used to predict sea-level rise often neglect subglacial hydrology. However, theory and observations suggest that ice flow and subglacial water flow are bidirectionally coupled: ice geometry affects hydraulic potential, hydraulic potential modulates basal shear stress via the basal water pressure, and ice flow advects the subglacial drainage system. This coupling could impact rates of ice mass change but remains poorly understood. We develop a coupled ice–subglacial-hydrology model to investigate the effects of coupling on the long-term evolution of marine-terminating ice sheets. We combine a one-dimensional channelized subglacial hydrology model with a depth-integrated marine-ice-sheet model, incorporating each component of the coupling listed above, yielding a set of differential equations that we solve using a finite-difference, implicit time-stepping approach. We conduct a series of experiments with this model, using either bidirectional or unidirectional coupling. These experiments generate profiles of channel cross-sectional area, channel flow rate, channel effective pressure, ice thickness, and ice velocity. We discuss how the profiles shape one another, resulting in the effective pressure reaching a local maximum in a region near the grounding line. We also describe the impact of bidirectional coupling on the transient retreat of ice sheets through a comparison of our coupled model with ice-flow models that have imposed static basal conditions. We find that including coupled subglacial hydrology leads to grounding-line retreat that is virtually absent when static basal conditions are assumed. This work highlights the role time-evolving subglacial drainage may have in ice-sheet change and informs efforts to include it in ice-sheet models. This work also supplies a physical basis for a commonly used parameterization which assumes that the subglacial water pressure is set by the bed's depth beneath the sea surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.