Abstract
<p>The conjugate gradient methods are noted to be exceedingly valuable for solving large-scale unconstrained optimization problems since it needn't the storage of matrices. Mostly the parameter conjugate is the focus for conjugate gradient methods. The current paper proposes new methods of parameter of conjugate gradient type to solve problems of large-scale unconstrained optimization. A Hessian approximation in a diagonal matrix form on the basis of second and third-order Taylor series expansion was employed in this study. The sufficient descent property for the proposed algorithm are proved. The new method was converged globally. This new algorithm is found to be competitive to the algorithm of fletcher-reeves (FR) in a number of numerical experiments.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Electrical Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.