Abstract

The spectral conjugate gradient methods, with simple construction and nice numerical performance, are a kind of effective methods for solving large-scale unconstrained optimization problems. In this paper, based on quasi-Newton direction and quasi-Newton condition, and motivated by the idea of spectral conjugate gradient method as well as Dai-Kou's selecting technique for conjugate parameter [SIAM J. Optim. 23 (2013), pp. 296–320], a new approach for generating spectral parameters is presented, where a new double-truncating technique, which can ensure both the sufficient descent property of the search directions and the bounded property of the sequence of spectral parameters, is introduced. Then a new associated spectral conjugate gradient method for large-scale unconstrained optimization is proposed. Under either the strong Wolfe line search or the generalized Wolfe line search, the proposed method is always globally convergent. Finally, a large number of comparison numerical experiments on large-scale instances from one thousand to two million variables are reported. The numerical results show that the proposed method is more promising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call