Abstract
Spin-crossover (SCO) at room temperature is a pivotal goal within the field of molecular magnetism. Herein, we attempt to assemble FeIII SCO complexes using a substituted Hqsal ligand, H2L (N-(8-quinolyl)-2,3-dihydroxybenzaldimine). Two complexes [Fe(HL)2]·X·2MeCN (X = BF4- for 1 and X = ClO4- for 2) were obtained and characterized. Single-crystal X-ray diffraction study reveals that the solvent and counteranion contact with the main structure through hydrogen bonding that significantly influences the SCO properties. Magnetic study reveals that both complexes show a one-step reversible spin transition below room temperature with a hysteresis loop width of 10 K for complex 1 and 4 K for complex 2. After removing the solvents, two-step SCO with a hysteresis loop width of 32 and 62 K is observed around room temperature for complex 1, while one-step SCO is found in complex 2. Magneto-structural study reveals that the differences in the SCO properties are related to the hydrogen bonding and solvent effects, which facilitates the spin transition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have