Abstract
Detailed differential scanning calorimetry (DSC), steady-state tryptophan fluorescence and far-UV circular dichroism (CD) studies, together with enzymatic assays, were carried out to monitor the thermal stability of anionic peanut peroxidase (aPrx) at pH 3.0. The spectral parameters were seen to be good complements to the highly sensitive but integral method of DSC. Thus, changes in far-UV CD corresponded to changes in the overall secondary structure of the enzyme, while changes in intrinsic tryptophan fluorescence emission corresponded to changes in the tertiary structure of the enzyme. The results, supported with data concerning changes in enzymatic activity with temperature, show that thermally induced transitions for aPrx are irreversible and strongly dependent upon the scan rate, suggesting that denaturation is under kinetic control. It is shown that the process of aPrx denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic scheme, N → k D , where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.