Abstract

We consider a model of a Hopf bifurcation interacting as a codimension 2 bifurcation with a saddle-node on a limit cycle, motivated by a low-order model for magnetic activity in a stellar dynamo. This model consists of coupled interactions between a saddle-node and two Hopf bifurcations, where the saddle-node bifurcation is assumed to have global reinjection of trajectories. The model can produce chaotic behaviour within each of a pair of invariant subspaces, and also it can show attractors that are stuck-on to both of the invariant subspaces. We investigate the detailed intermittent dynamics for such an attractor, investigating the effect of breaking the symmetry between the two Hopf bifurcations, and observing that it can appear via blowout bifurcations from the invariant subspaces. We give a simple Markov chain model for the two-state intermittent dynamics that reproduces the time spent close to the invariant subspaces and the switching between the different possible invariant subspaces; this clarifies the observation that the proportion of time spent near the different subspaces depends on the average residence time and also on the probabilities of switching between the possible subspaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.