Abstract

In the article, computer design of routes of linear structures is considered as a spline approximation problem. A fundamental feature of the corresponding design tasks is that the plan and longitudinal profile of the route consist of elements of a given type. Depending on the type of linear structure, line segments, arcs of circles, parabolas of the second degree, clothoids, etc. are used. In any case, the design result is a curve consisting of the required sequence of elements of a given type. At the points of conjugation, the elements have a common tangent, and in the most difficult case, a common curvature. Such curves are usually called splines. In contrast to other applications of splines in the design of routes of linear structures, it is necessary to take into account numerous restrictions on the parameters of spline elements arising from the need to comply with technical standards in order to ensure the normal operation of the future structure. Technical constraints are formalized as a system of inequalities. The main distinguishing feature of the considered design problems is that the number of elements of the required spline is usually unknown and must be determined in the process of solving the problem. This circumstance fundamentally complicates the problem and does not allow using mathematical models and nonlinear programming algorithms to solve it, since the dimension of the problem is unknown. The article proposes a two-stage scheme for spline approximation of a plane curve. The curve is given by a sequence of points, and the number of spline elements is unknown. At the first stage, the number of spline elements and an approximate solution to the approximation problem are determined. The method of dynamic programming with minimization of the sum of squares of deviations at the initial points is used. At the second stage, the parameters of the spline element are optimized. The algorithms of nonlinear programming are used. They were developed taking into account the peculiarities of the system of constraints. Moreover, at each iteration of the optimization process for the corresponding set of active constraints, a basis is constructed in the null space of the constraint matrix and in the subspace – its complement. This makes it possible to find the direction of descent and solve the problem of excluding constraints from the active set without solving systems of linear equations. As an objective function, along with the traditionally used sum of squares of the deviations of the initial points from the spline, the article proposes other functions taking into account the specificity of a particular project task.

Highlights

  • Financial disclosure: The authors have no a financial or property interest in any material or method mentioned

  • Computer design of routes of linear structures is considered as a spline approximation problem

  • A fundamental feature of the corresponding design tasks is that the plan and longitudinal profile of the route consist of elements of a given type

Read more

Summary

ПОСТАНОВКА ЗАДАЧИ АППРОКСИМАЦИИ СПЛАЙНОМ С ДУГАМИ ОКРУЖНОСТЕЙ И ЕЕ

Рассмотрим задачу проектирования продольного профиля прямолинейными элементами, которые сопрягаются дугами окружностей. При проектировании новых дорог в качестве целевой функции на данном этапе могут быть приняты суммарные объемы земляных работ в насыпях и в выемках. Строительные затраты могут быть приняты в качестве целевой функции, если в насыпях и в выемках нет взаимосвязи элементов, которая возникает при использовании грунтов выемок для сооружения насыпей и требует рассмотрения проектной линии как единого целого [14], как в нелинейном программировании. На этапе преобразования исходной ломаной («цепочки» или существующего профиля) в сплайн нужного вида отклонения по ординатам (рабочие отметки) невелики (порядка 0.5 м [14]), что позволяет использовать упрощенные критерии оптимальности, поскольку цель данного этапа – определить число элементов и их примерное расположение, то есть построить начальное приближение для применения нелинейного программирования. При проектировании продольного профиля при реконструкции железных дорог прямолинейными элементами без учета влияния круговых кривых, которые вписывались в найденную линию, успешно использовалась гладкая моделирующая функция F(h) (сплайн второго порядка с дефектом, равным единице), график которой представлен на рис. Если целевая функция – объем земляных работ, то F(hi) – площадь поперечного сечения в i-й точке – остается кусочно-квадратической и соответствует вычислению объема как интеграла от площади по формуле трапеций

СПЛАЙН-АППРОКСИМАЦИЯ ПО МЕТОДУ ДИНАМИЧЕСКОГО ПРОГРАММИРОВАНИЯ
ОПТИМИЗАЦИЯ ПАРАМЕТРОВ СПЛАЙНА
Формирование матрицы активных ограничений
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.