Abstract

We consider two problems of m-machine flow shop scheduling in this paper: one, with the objective of minimizing the variance of completion times of jobs, and the other with the objective of minimizing the sum of squares of deviations of job completion times from a common due date. Lower bounds on the sum of squares of deviations of job completion times from the mean completion time of jobs for a given partial sequence are first presented. Using these lower bounds, a branch and bound algorithm based on breadth-first search procedure for scheduling n jobs on m-machines with the objective of minimizing completion time variance (CTV) is developed to obtain the best permutation sequence. We also present two lower bounds and thereafter, a branch and bound algorithm with the objective of minimizing the sum of squares of deviations of job completion times from a given common due date (called the MSD problem). The computational experience with the working of the two proposed branch and bound algorithms is also reported. Two heuristics, one for each of the two problems, are developed. The computational experience on the evaluation of the heuristics is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.