Abstract

A two-stage source reconstruction algorithm for bioluminescence tomography (BLT) is developed using hybrid finite element method (FEM). The proposed algorithm takes full advantages of linear and quadratic FEMs, which can be used to localize and quantify bioluminescent source accurately. In the first stage, a large permissible region is roughly determined and then iteratively evolved to reduce matrix dimension using efficient linear FEM. In the final stage, high-convergence quadratic FEM is applied to improve reconstruction result. Both numerical simulation and physical experiment are performed to evaluate the proposed algorithm. The relevant results demonstrate that quantitative reconstruction can be well achieved in terms of computation efficiency, source position, power density, and total power when compared with previous studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.