Abstract

Renewable energy will be dominant in the power system in the future, and the issues of wind and photovoltaic consumption will become increasingly serious. Given the impact of multiple uncertainties such as renewable energy generation and load prediction errors on the dispatch in the integrated energy system, this paper distinguishes the respective characteristics of source-load uncertainty and proposes a robust stochastic optimal dispatching strategy for the integrated energy system. Using robust optimization to portray the requirements for safe system operation under uncertainty of photovoltaic and wind power output, coupled with stochastic optimization to transform the uncertainty of multi-energy load forecasting into the scenario analysis problem, a two-stage robust stochastic optimal dispatch model is constructed to optimize unit output at each time period with the objective of minimizing system operating costs. Finally, the simulation results show that the two-stage optimal dispatch strategy can promote the consumption of renewable energy and effectively suppress the random fluctuations on both sides of the source-load. And the model built in this paper has a lower average operating cost and improves the economy of integrated energy system operation while ensuring reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call