Abstract

Internet of Things (IoT) technology has recently been applied in healthcare systems as an Internet of Medical Things (IoMT) to collect sensor information for the diagnosis and prognosis of heart disease. The main objective of the proposed research is to classify data and predict heart disease using medical data and medical images. The proposed model is a medical data classification and prediction model that operates in two stages. If the result from the first stage is efficient in predicting heart disease, there is no need for stage two. In the first stage, data gathered from medical sensors affixed to the patient’s body were classified; then, in stage two, echocardiogram image classification was performed for heart disease prediction. A hybrid linear discriminant analysis with the modified ant lion optimization (HLDA-MALO) technique was used for sensor data classification, while a hybrid Faster R-CNN with SE-ResNet-101 modelwass used for echocardiogram image classification. Both classification methods were carried out, and the classification findings were consolidated and validated to predict heart disease. The HLDA-MALO method obtained 96.85% accuracy in detecting normal sensor data, and 98.31% accuracy in detecting abnormal sensor data. The proposed hybrid Faster R-CNN with SE-ResNeXt-101 transfer learning model performed better in classifying echocardiogram images, with 98.06% precision, 98.95% recall, 96.32% specificity, a 99.02% F-score, and maximum accuracy of 99.15%.

Highlights

  • Smart healthcare provides healthcare platforms that use gadgets such as wearable appliances, the Internet of Things (IoT), and the mobile Internet to conveniently enter health documents and connect resources, individuals, and organizations

  • Smart healthcare involves a wide range of operatives, including physicians, nurses, hospitals, and research organizations

  • The proposed work was implemented on Amazon cloud

Read more

Summary

Introduction

Smart healthcare provides healthcare platforms that use gadgets such as wearable appliances, the IoT, and the mobile Internet to conveniently enter health documents and connect resources, individuals, and organizations. Smart healthcare involves a wide range of operatives, including physicians, nurses, hospitals, and research organizations. It consists of a dynamic framework with numerous dimensions, such as disease detection and prevention, evaluation and assessment, decision-making, healthcare management, and medical research. Smart healthcare includes automated networks, such as the IoT, the Internet, artificial intelligence (AI), Big Data, cloud networking, and 5G, as well as advanced biotechnology. The global smart health industry was worth USD 143.6 billion in 2019, and is expected to increase at a 16.2 percent annual pace between 2021 and

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call