Abstract

Photodissociation dynamics of H(2)O via the D state by two-photon absorption have been investigated using the H-atom Rydberg tagging time-of-flight technique. The action spectrum of the D<--X transition band has been measured. The predissociation lifetime of the D state is determined to be about 13.5 fs. The quantum state-resolved OH product translational energy distributions and angular distributions have also been measured. By carefully simulating these distributions, quantum state distributions of the OH product as well as the state-resolved angular anisotropy parameters were determined. The most important pathway of the H(2)O dissociation via the D state leads to the highly rotationally excited OH(X,v=0) products. Vibrationally excited OH(X) products (up to v=10) and electronically excited OH(A,v=0,1,2) have also been observed. The OH(A)/OH(X) branching ratios are determined to be 17.9% at 244.540 nm (2omega(1)=81,761.4 cm(-1)) and 19.9% at 244.392 nm (2omega(2)=81,811 cm(-1)), which are considerably smaller than the value predicted by the theory. These discrepancies are attributed to the nonadiabatic coupling effect between the B and D surfaces at the bent geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.