Abstract

Two-photon laser lithography has become one of the most promising additive manufacturing techniques on the micron scale and is applied, e.g., in fields of micro-optics and -robotics as well as optical and mechanical metamaterials. Here, we report on the feasibility, limits and general benefits of this method to fabricate material measures for the calibration of industrial optical topography measuring devices. Since calibration procedures are essential in the scientific and industrial application of those measuring instruments, appropriate material measures are highly required. In contrast to traditional manufacturing technologies, we show that two-photon laser lithography allows a highly resolved fabrication of multiple, almost arbitrary standardized calibration geometries on a micron length scale. Hereby, all structures are fabricated on only one single substrate, therefore enabling a mapping of a broad range of metrological characteristics for topography characterization. The most required calibration geometries are manufactured and analyzed regarding their aging behavior, their quality improvement by a post-UV development and the resolution limits within the manufacturing as well as the calibration process. Thus, the general industrial and scientific relevance of manufacturing material measures with two-photon laser lithography is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call