Abstract
Composite nanofibrous mat composed of neat polyurethane (PU) and multiwalled carbon nanotubes/polyurethane (MWNT/PU) nanofibers have been fabricated by one-step angled two-nozzle electrospinning. The morphological, thermal, and mechanical properties of the electrospun nanofibers were evaluated. The diameters of electrospun neat PU and composite nanofibers ranged from 239 to 1058 nm. The two-nozzle electrospun (MWNT/PU)/PU composite nanofibers showed curly, and randomly-oriented fibers with interfiber bonding, and were generally bigger in size than single-nozzle electrospun nanofibers. The tensile strength of the neat PU composite nanofiber mat obtained from two-nozzle electrospinning was 25% higher than that obtained from neat PU single-nozzle electrospinning. The incorporation of MWNTs in the composite nanofiber increased the tensile strength by as much as 64% without reducing elongation, made the composite nanofiber more thermally stable, and improved the melting zone. The present results showed that side-by-side angled two-nozzle electrospinning can improve the quality of the electrospun nanofibers that could have potential application in different fields such as filtration, protective clothing and tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.