Abstract

This paper describes a one-step fabrication of tourmaline (TM) nanoparticles (NPs)-decorated polyurethane (PU) composite nanofibers with superhydrophilic and antibacterial properties. The physico-chemical properties of the prepared samples were characterized by different characterization techniques. FESEM and TEM images confirmed the presence of well-dispersed TM NPs in/on PU nanofibers. The incorporation and homogeneous dispersion of 3wt% TM NPs in PU exhibited an increase in tensile strength and modulus of 75% and 87%, respectively from those of the neat PU. All TM/PU composite mats showed improved hydrophilicity compared to neat PU mat, and a superhydrophilic surface with a contact angle of 13° was obtained at 5wt% TM content. FTIR spectra confirmed the interaction of TM NPs to PU matrix through hydrogen bonding. Bacterial tests showed high zone inhibition for both Escherichia coli (Gram-negative) and Enterococci (Gram-positive) using the TM/PU composite mats with increasing efficiency as with the increase of TM NP content. The present TM/PU composite mat, which has improved mechanical properties, superhydrophilic surface, and good antibacterial properties, may be a potential candidate as an antibacterial material, in the field of health-protection textile and water filtration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.