Abstract
In the configuration of distributed energy systems, the impact of ambient temperature on gas turbines is often overlooked, leading to inaccuracies and suboptimal performance. Previous research, which have used fixed operation strategies and electric cooling ratios, also leaves room for improvement. This paper addresses these issues by finely considering the mathematical model of micro gas turbines (MGT) in distributed energy systems with multiple energy storage (DES-MES), and by taking into account ambient temperature and operating power to determine the electrical efficiency of MGT throughout the year. This paper employs a two-layer co-optimization method to configure device capacity and find the optimal variable operation strategy and electrical cooling ratio. This study improves the annual total cost saving rate, carbon dioxide emissions saving rate, and primary energy consumption saving rate by 35.4%, 67.6%, and 64.7%, respectively, compared to the separate production system. By accounting for the effect of ambient temperature on MGT, the annual performance of DES-MES is improved by 24.38% compared to fixed electrical efficiency MGT model. Additionally, the annual performance of DES-MES using variable operation strategy and electric cooling ratio is optimized by 23.89% compared to fixed operation scheme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have