Abstract

We develop an adiabatic two-mode Floquet theory to analyse multiphoton coherent population transfer in N-level systems by two delayed laser pulses, which is a generalization of the three-state stimulated Raman adiabatic passage (STIRAP). The main point is that, under conditions of non-crossing and adiabaticity, the outcome and feasibility of a STIRAP process can be determined by the analysis of two features: (i) the lifting of degeneracy of dressed states at the beginning and at the end of the laser pulses, and (ii) the connectivity of these degeneracy-lifted branches in the quasienergy diagram. Both features can be determined by stationnary perturbation theory in the Floquet representation. As an illustration, we study the corrections to the RWA of the (1+1) STIRAP in strong fields and for large detunings. We analyse the possible breakdown of connectivity. In strong fields, the complete transfer is achieved, but the intermediate state, unpopulated within the RWA, can become populated during the process. In the (2+1) STIRAP, we show a residual degeneracy in a four-level system, that can be lifted by additional Stark shifts. The complete transfer is achieved under conditions of connectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.