Abstract

In a companion paper, mechanistic models of major fluid particle interaction phenomena involving two bubble groups have been proposed. The prediction of interfacial area concentration evolution using the one-dimensional two-group transport equation and evaluation with experimental results are performed in the paper. These evaluations are based on solid databases for a 2-inch air–water loop with sufficient information on the axial development and the radial distribution of the local parameters. Model evaluation strategies are systematically analyzed. The predictions for the interfacial area concentration evolution demonstrate satisfactory accuracy. The proposed model predicts a smooth transition across the bubbly-to-slug flow regime boundary and demonstrates mechanisms for the generation and development of the cap/slug bubble group. The two-group interfacial area transport equation covers a wide range from bubbly, slug, to churn turbulent flow regimes for adiabatic air–water upward flow in moderate diameter pipes. The generality of the interfacial transport model is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call