Abstract

Abstract The interfacial area transport equation is a more accurate and stable way to compute the interfacial area concentration than the traditional empirical correlation in the two-phase two-fluid model. And among the parameters in the two-group interfacial area transport equation, the interfacial area concentration weighted area-averaged gas velocity is an important parameter to close the two-group area-averaged interfacial area transport equation in the system analysis code. However, there has been no theory model to compute the interfacial area concentration weighted area-averaged gas velocity until now. So this study established the theory model for two-group interfacial area concentration weighted area-averaged gas velocity based on the drift-flux model for the two-phase dispersed bubble flow. The experimental data were selected from the published literature, which include the detailed two-phase interfacial structure experimental data for the slug bubble flow. The interfacial area concentration weighted area-averaged gas velocity model predicted the selected experimental data well, which validated the developed model. Moreover, the difference between the interfacial area concentration weighted area-averaged gas velocity and the void weighted area-averaged gas velocity is clarified quantitatively for the first time. The theory model developed in this study can be improved and then be used to compute the interfacial area weighted area-averaged gas velocity because it includes the empirical parameter of conventional drift-flux model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call