Abstract

In this paper, we investigate a two‐grid weak Galerkin method for semilinear elliptic differential equations. The method mainly contains two steps. First, we solve the semilinear elliptic equation on the coarse mesh with mesh size , then, we use the coarse mesh solution as an initial guess to linearize the semilinear equation on the fine mesh, that is, on the fine mesh (with mesh size ), we only need to solve a linearized system. Theoretical analysis shows that when the exact solution has sufficient regularity and , the two‐grid weak Galerkin method achieves the same convergence accuracy as weak Galerkin method. Several examples are given to verify the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.