Abstract
The occurrence of superconductivity in topological materials is considered as a promising route for realizing topological superconductors, a platform able to host the long-sought Majorana fermions in condensed matter. In this work, by using electrical transport and heat-capacity measurements, as well as first-principles band-structure calculations, we investigate the physical properties of TaOsSi, a superconductor with ${T}_{c}\ensuremath{\approx}5.8$ K. The behavior of both its upper critical field and low-temperature heat-capacity suggest the existence of two superconducting gaps. More strikingly, first-principles calculations reveal gapless topological surface states in the present material. The evolution of the electrical resistivity with pressure (up to 50 GPa) was also investigated, and a ``V-shaped'' diagram of ${T}_{c}$ vs $P$ was found. Overall, our data suggest that TaOsSi is a new system where multiband superconductivity and topological surface states coexist and, hence, it may serve as a possible candidate in the search for topological superconductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.