Abstract
Some closed polyhedral surfaces can be completely covered by two-way, twofold (rectangular) weaving of strands of constant width. In this paper, a construction for producing all possible geometries for such weavable cuboids is proposed: a theorem on spherical octahedra is proven first that all further theory is based on. The construction method of weavable cuboids itself relies on successive truncations of an initial tetrahedron and is also extended for cases of degenerate (unbounded) polyhedra. Arguments are mainly based on the plane geometry of the development of the respective polyhedra, in connection with some of three-dimensional projective properties of the same.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.