Abstract

Piezoelectric two-dimensional (2D) van der Waals (vdWs) materials are highly desirable for applications in miniaturized and flexible/wearable devices. However, the reverse-polarization between adjacent layers in current 2D layered materials results in decreasing their in-plane piezoelectric coefficients with layer number, which limits their practical applications. Here, we report a class of 2D layered materials with an identical orientation of in-plane polarization. Their piezoelectric coefficients (e22) increase with layer number, thereby allowing for the fabrication of flexible piezotronic devices with large piezoelectric responsivity and excellent mechanical durability. The piezoelectric outputs can reach up to 0.363 V for a 7-layer α-In2Se3 device, with a current responsivity of 598.1 pA for 1% strain, which is 1 order of magnitude higher than the values of the reported 2D piezoelectrics. The self-powered piezoelectric sensors made of these newly developed 2D layered materials have been successfully used for real-time health monitoring, proving their suitability for the fabrication of flexible piezotronic devices due to their large piezoelectric responses and excellent mechanical durability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.