Abstract

Semiconducting indium selenide (InSe) monolayers have drawn a great deal of attention among all the chalcogenide two-dimensional materials on account of their high electron mobility; however, they suffer from low hole mobility. This inherent limitation of an InSe monolayer can be overcome by stacking it on top of a boron phosphide (BP) monolayer, where the complementary properties of BP can bring additional benefits. The electronic, optical, and external perturbation-dependent electronic properties of InSe/BP hetero-bilayers have been systematically investigated within density functional theory in anticipation of its cutting-edge applications. The InSe/BP heterostructure has been found to be an indirect semiconductor with an intrinsic type-II band alignment where the conduction band minimum (CBM) and valence band maximum (VBM) are contributed by the InSe and BP monolayers, respectively. Thus, the charge carrier mobility in the heterostructure, which is mainly derived from the BP monolayer, reaches as high as 12 × 103 cm2 V−1 s−1, which is very much desired in superfast nanoelectronics. The suitable bandgap accompanied by a very low conduction band offset between the donor and acceptor along with robust charge carrier mobility, and the mechanical and dynamical stability of the heterostructure attests its high potential for applications in solar energy harvesting and nanoelectronics. The solar to electrical power conversion efficiency (20.6%) predicted in this work surpasses the efficiencies reported for InSe based heterostructures, thereby demonstrating its superiority in solar energy harvesting. Moreover, the heterostructure transits from the semiconducting state (the OFF state) to the metallic state (the ON state) by the application of a small electric field (∼0.15 V Å−1) which is brought about by the actual movement of the bands rather than via the nearly empty free electron gas (NFEG) feature. This thereby testifies to its potential for applications in digital data storage. Moreover, the heterostructure shows strong absorbance over a wide spectrum ranging from UV to the visible light of solar radiation, which will be of great utility in UV—visible light photodetectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call