Abstract

Self-assembled alkane layers are introduced between graphene layers to physically block nanometer size defects in graphene and lateral gas pathways between graphene layers. A well-defined hexatriacontane (HTC) monolayer on graphene could cover nanometer-size defects because of the flexible nature and strong intermolecular van der Waals interactions of alkane, despite the roughness of graphene. In addition, HTC multilayers between graphene layers greatly improve their adhesion. This indicates that HTC multilayers between graphene layers can effectively block the lateral pathway between graphene layers by filling open space with close-packed self-assembled alkanes. By these mechanisms, alternately stacked composites of graphene and self-assembled alkane layers greatly increase the gas-barrier property to a water vapor transmission rate (WVTR) as low as 1.2 × 10-3 g/(m2 day), whereas stacked graphene layers generally show a WVTR < 0.5 g/(m2 day). Furthermore, the self-assembled alkane layers have superior crystallinity and wide bandgap, so they have little effect on the transmittance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.