Abstract

Graphene is a single layer of carbon atoms arranged in a chicken-wire-like hexagonal lattice and in spite of its recent availability for experimental investigations (Novoselov et al., 2004) it is an object of great interest for many researchers (Elias et al., 2009; Sofo et al., 2007; Luo et al., 2009; Teweldebrhan and Balandin, 2009; Ilyin et al., 2009) because of amazingly wide field of its potential applicability: electronics, sensors, materials science, biology etc. In particular, graphene and few layer graphene fragments as well as carbon nanotubes can be used in production of composites, based on metal, ceramic, polymer matrices, filled with graphene’s or few layer graphene fragments as elements of reinforcement. Obviously, the main goal of using graphene or nanotubes in making composites is using their extremely high mechanical characteristics in combination with low weight. It should be noticed, that many difficulties concerning graphene’s applications originate from its surface chemical inertness. In other words, the sp2 electron structure of ideal graphene often results in very low binding energy between graphene’s surface and atoms of many elements. It is one of the obstacles for modifying and applications of graphene in production of electronic devices, when controllable electronic properties are needed. Besides, it results in poor interfacial bonding of the graphene fragments with matrices in composite materials and with sliding between few layer graphene sheets under stressed state. The noticeable success in this direction has been recently achieved in the work (Elias et al., 2009), in which the hydrogenation of graphene was performed by using an ion-plasma technique. It should be noticed, that composite of graphene and hydrogen, associated with graphene’s surface was theoretically predicted few years ago in the paper (Sofo et al., 2007) and named as graphane. Unfortunately, this success up to now can be surely referred only to graphene-hydrogen composition. But today’s technologies especially in the field of materials science need much more wide area of possible compositions and special materials. It was reasonable to suppose, that radiation defects may essentially improve binding ability of graphene with atoms of other elements due to production of additional chemical bonds (Ilyin, 2010; Ilyin & Beall, 2010). It is especially important for application of graphene species in R&D of composites. Moreover defects in such structures may improve mechanical properties by linking reinforcing carbon nanoelements to each other and by increasing the strength and stiffness of the composite (Ilyin et al.,2010). Unfortunately, it is not yet well understood which kinds of stable radiation defects and their complexes can exist in graphene and its derivatives. Obviously, it is not easy to create definite types of radiation defects and

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call