Abstract

Si is a promising candidate for next-generation anode materials in lithium rechargeable batteries as it has a high theoretical specific capacity. However, mechanical damage due to volume changes during electrochemical cycling and low electrical conductivity are critical limitations for practical anode applications. Herein, a novel microscale 2D active material with alternating layers of Si and silicon oxide is developed, and its energy storage properties are investigated by fabricating a composite anode with conventional graphite. The composite anode shows improved specific capacity by the introduction of veneer-shaped Si microparticles and 88% capacity retention after 200 charge–discharge cycles. The adequate thickness of the layers and the repeating buffering layer existence in the high aspect-ratio microscale particles that mimic a 2D nanostructure minimized the volume changes of the Si-based electrode during cycling while achieving high electrical conductivity. This strategy can provide fundamental breakthroughs in overcoming the existing limitations of Si-based materials for the development of high-energy-density active materials for Li batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.