Abstract

This paper presents an investigation of argon capacitively coupled plasma at low pressure. A two-dimensional, time-dependent fluid model is used to describe the production, transport, and destruction of electrons and positive ions. The model is solved for a GEC(gaseous electronics conference) Cell reactor type (with 4cm diameter and 2.5cm interelectrode distance) operating at frequency 13.56MHz, pressure 1Torr and applied voltage 1000V, in pure argon. Two-dimensional distributions are presented in the stationary state, including electron temperature and species density i.e. electron, ion and metastable atom. The electric field and electric potential at different phases in one RF cycle is also studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call