Abstract
We developed and tested a two-dimensional Monte Carlo – fluid hybrid numerical code for the DC glow discharge simulations. The model is based on the separation of electrons into two parts, namely, the low energetic (slow) and high energetic (fast) groups. Ions and slow electrons are described within the fluid model using the drift-diffusion approximation for particle fluxes. Electrostatic field is obtained from the solution of Poisson equation. Fast electrons, represented by the appropriate number of super particles emitted from the cathode, are responsible for ionization processes in the discharge volume. Test calculations were carried out for the argon plasma. The vortex current formation in a DC discharge is observed in the case of rectangular geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.