Abstract

Proteome analysis technology has been used extensively in conducting discovery research of biology and has become one of the most essential technologies in functional genomics. The proteomes of the human hepatoma cell line BEL-7404 and the normal human liver cell line L-02 have been separated by high resolution two-dimensional gel electrophoresis (2-DE) with immobilized pH gradient isoelectric focusing (IPG-IEF) in the first dimension and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) in the second dimension (IPG-DALT). The resulting images have been analyzed using 2-D analysis software. Quantitative analysis reveals that 7 protein spots are detected only in hepatoma BEL-7404 cells, 14 only in L-02 cells, and 78 protein spots show significant fluctuation in quantity in both cell lines (P< 0.01). These protein spots have been displayed on a proteome differential expression map. Analysis for the reproducibility of 2-DE indicates that the positional variability in the IEF dimension is 0.73 mm, while the variability in the SDS-PAGE dimension is 0.44 mm, and the quantitative variability is 17.6%–19.2%. These results suggest that the reproducibility of 2-DE has been suitable for the study of differential expression of proteomes. Proteome differential expression maps can be useful tools for disease diagnosis, drug-target validation analysis and biological process elucidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.