Abstract

State-of-the-art semiconductor devices require accurate control of the full two-dimensional dopant distribution. In this work, we report results obtained on 2D electrical characterization of ultra shallow junctions in Si using off axis electron holography to study two-dimensional effects on diffusion. In particular, the effect of a nitride diffusion mask on lateral diffusion of phosphorous is discussed. Retardation of lateral diffusion of P under the nitride diffusion mask is observed and compared to the lateral diffusion of P under an oxide diffusion mask. The ultra shallow junctions for the study were fabricated by a rapid thermal diffusion process from heavily P doped spin-on-dopants into a heavily B doped Si substrate. These shallow junctions are needed for fabricating source/drain extensions in nanoscale MOSFETs. One-dimensional electrical characterization of the junction was carried out to determine the electrical junction depth and compared to the metallurgical junction depth from SIMS analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call