Abstract

For nano-scale communications, there must be cooperation and simultaneous communication between nano devices. To this end, in this paper, we investigate two-way (a.k.a. bi-directional) molecular communications between nano devices. If different types of molecules are used for the communication links, the two-way system eliminates the need to consider self-interference. However, in many systems, it is not feasible to use a different type of molecule for each communication link. Thus, we propose a two-way molecular communication system that uses a single type of molecule. We derive a channel model for this system and use it to analyze the proposed system’s bit error rate, throughput, and self-interference. Moreover, we propose analog- and digital- self-interference cancellation techniques. The enhancement of link-level performance using these techniques is confirmed with both particle-based simulations and analytical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.